
Imagine the benefits that could reaped if economic activity could be organised in a rational and scientific way, instead of abandoned to the chaos the marketplace! Imagine the efficiency gains there would be, with workers, managers, farms, and factories all pulling together instead of wastefully competing against each other!
For a period, in the Soviet Union of the 1950s and 60s, there was a genuine and exhilarating belief not just that communism was morally preferable to capitalism, but that it could actually beat capitalism at its own game. There was even a moment, at least for those with the eyes to see it, when it looked as if that might just be beginning to happen.
It is this era which is so brilliantly captured in Francis Spufford’s fictionalised account, Red Plenty. I was recommended the book by the estimable Miranda Mowbray, when we were both speakers at a maths outreach day in London. Her talk was on “Drinking from the fire hose – data science”. Mine was on Linear Programming, and afterwards Miranda remarked that she’d read a book in which Linear Programming was the main character. And so it is.
For the question arises: in the absence of a market to balance supply and demand, how should the central planners set about their work? How much viscose should they instruct a particular factory to produce, given the number and locations of other factories, the availability of sulphur, salt and coal, and the requirements of the fabric, cellophane, and tyre manufacturers?
Astonishingly, the mathematician Leonid Vitalevich Kantorovich was able to devise a tool to answer to this sort of conundrum, in his seminal 1939 work on optimal resource allocation. (It would earn him a Nobel Memorial Prize in Economics in 1975.) The consequence of this breakthrough was spectacular: the political apparatus of central planning could be armed with linear programming, the technical means to accomplish that task, and thus would usher in a new era of Soviet abundance.
Well, it’s hardly a spoiler to say that it didn’t work out quite like that. Red Plenty recounts the rise and fall of that tide: from the elation of discovery and the hope of a better world, to frustration, cynicism, and the ultimate tragedy of failure.
Now, a book about a doomed political philosophy and a technical mathematical procedure may be admirable, but is it entertaining? Reader, it is rip-roaringly so. The story is told episodically, each chapter built around one character, sometimes real, sometimes fictional, each passage invested with the significance that its inhabitants feel. Some are hilarious, some horrifying.
There is Kantorovich, of course, the prodigy and professor. There is the ambitious but sincere (fictional) young economist Emil Shaidullin, trudging through fields in his best city suit, determined to improve the lot of the rural poor. Sasha Galich is a (real) flamboyant song-writer and playwright, becoming uneasy with the ends to which his art is put. Zoya Vaynshteyn is a (fictional) scientist enjoying a mad midsummer’s night, but quietly pitied by her colleagues for the unsayable truth: that her subject, genetics, is afflicted with the plague of Lysenkoism. Sergei Lebedev is a (real) computer pioneer, toiling away in his Institute’s basement to build the machines that will perform the enormous economic calculations far faster than any capitalist market. We meet Mr Chairman, Nikita Sergeyevich Khrushchev himself, travelling to the USA to strike a deal and issue oafish challenges. A (fictional) central planner Maksim Maksimovich Mokhov juggles the balances for 373 commodities in the chemical and rubber goods sector.
What’s so compelling is the colour and humanity of all these people as they live their lives entangled in the Soviet system. Some embrace the socialist dream, some resist, many simply try to organise their affairs around it. There are a few striking characters we meet only once, such as the (fictional) wheeler-dealer Chekuskin, frantically digging his clients (and himself) out of political holes in the Urals. But several we revisit at later stages of their careers, when dreams have died (or been revised downwards), consciences have been pricked, or lines have finally been crossed. Whilst an idea, that of Linear Programming, may indeed be the story’s main character, it is the human supporting cast that makes it so engrossing.
As a postscript, it is worth stressing that Linear Programming really did change the world, and in an altogether more desirable fashion than can be said for the command economy. As so often during the Cold War, very similar work was carried out independently and in parallel on opposite sides of the Atlantic. Linear Programming arrived in the USA with George Dantzig’s 1947 discovery of the Simplex Algorithm. Nowadays, these techniques are employed daily by countless organisations around the world to solve otherwise intractable optimisation problems.