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ASYMPTOTIC CLASSES OF FINITE STRUCTURES

RICHARD ELWES

§1. Introduction. In this paper we consider classes of finite structures where we
have good control over the sizes of the definable sets. The motivating example is the
class of finite fields: it was shown in [1] that for any formula φ(x̄, ȳ) in the language
of rings, there are finitely many pairs (d, ì) ∈ ù ×Q>0 so that in any finite field F
and for any ā ∈ Fm the size |φ(Fn, ā)| is “approximately” ì|F|d . Essentially this is
a generalisation of the classical Lang-Weil estimates from the category of varieties
to that of the first-order-definable sets.
Motivated by this, we say that finite fields form a 1-dimensional asymptotic class.
Macpherson andSteinhorn in [5] have studied these classes in abstract. Generalising
this, in 2.1 below we define N -dimensional asymptotic classes for natural numbers
N ≥ 1, and begin to develop their general theory. In that definition, we have relaxed
the asymptotic conditions (the meaning of “approximately” above), to encompass
to the widest possible range of examples. We prove in corollary 2.8 that our classes
lie within the general context of supersimple theories of finite rank.
In section 3 we consider how to define and interpret asymptotic classes inside one
another, and in proposition 3.7 we show that the property of being an asymptotic
class is invariant under bi-interpretations. In section 4 we give some examples of
asymptotic classes, in particular, in proposition 4.1 we show that the smoothly
approximable structures comprehensively studied in [2] fit into our framework.
In section 5 we re-examine the relationship between dimension and D-rank. In
section 6 we consider stable asymptotic classes. We show that stability can be
detected within the finite structures in our context, and in proposition 6.5, we
observe that stable asymptotic classes are locally modular.

Notation. If U is a (non-principal) ultrafilter on a set I and {Mi : I } is a
collection of L -structures, we denote the ultraproduct by P =

∏
i∈I Mi

/
U , and

for ā = (a1, . . . , an) ∈ Pn, we shall write ā(M ) = (a1(M ), . . . an(M )) to mean
the tuple of co-ordinates of ā in M , so that for each j ∈ {1, . . . , n} we have
aj =

∏
i∈I aj(Mi )

/
U .

If M is an L -structure, we write Def(M ) for the collection of all parameter-
definable sets in all powers ofM .
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§2. Basic definitions and lemmas.

2.1. Definition. Let L be a countable first order language, N ∈ ù, and C a
class of finite L -structures. Then we say that C is a an N -dimensional asymptotic
class if for every L -formula φ(x, ȳ) where l(ȳ) = m, there is a finite set of pairs
D ⊆ ({0, . . . , N} × R>0) ∪ {(0, 0)} and for each (d, ì) ∈ D a collection Φ(d,ì) of
elements of the form (M, ā) whereM ∈ C and ā ∈Mm , so that {Φ(d,ì) : (d, ì) ∈ D}
is a partition of {{M} ×Mm : M ∈ C }, and

|φ(M, ā)| − ì|M | dN = o(|M | dN )
as |M | −→ ∞ and (M, ā) ∈ Φ(d,ì).
Moreover each Φ(d,ì) is definable, that is to say {ā ∈ Mm : (M, ā) ∈ Φ(d,ì)} is
uniformly ∅-definable across C .
We may writeDφ forD, and will call {Φ(d,ì) : (d, ì) ∈ D} a (definable) asymptotic
partition.
We write h(φ(M, ā)) := (dim(φ(M, ā)),meas(φ(M, ā))) := (d, ì)where (M, ā) ∈
Φ(d,ì), except that if d = ì = 0wework with the convention that dim(φ(M, ā)) = −1.
We call C a weak asymptotic class when C satisfies the asymptotic criteria, but the
Φ(d,ì) may fail to be definable.

Notice that anN -dimensional class is also an rN -dimensional class for all r ∈ ù.
We will usually choose N minimal so that the definition is satisfied.
It is immediate that the collection of all asymptotic classes is closed under taking
subclasses and finite unions, and under expansions of the language by finitely many
constants.
The above definition deals only with L -formulae in one variable (plus para-
meters). However the next lemma shows that the corresponding statement for
L -formulae in more variables follows automatically.

2.2. Lemma. If C is anN -dimensional asymptotic class, then for everyL -formula
φ(x̄, ȳ) where l(x̄) = n and l(ȳ) = m, there is a finite set of pairs

D ⊆ ({0, . . . , Nn} × R>0) ∪ {(0, 0)}
and a partition {Φ(d,ì) : (d, ì) ∈ D} of {{M} ×Mm : M ∈ C } so that

|φ(M n , ā)| − ì|M | dN = o(|M | dN )
as |M | −→ ∞ and (M, ā) ∈ Φ(d,ì).
Again each Φ(d,ì) is definable.

Proof. We proceed by induction on n. The case n = 1 holds by assumption,
so suppose that it holds for all L -formulae φ0(x̄, ȳ) where l(x̄) ≤ n. Consider
now φ(z, x̄, ȳ) where l(x̄) = n, l(ȳ) = m. By the case n = 1, there exists ∆ =
{(e1, ì1), . . . , (et , ìt)} ⊆ {0, . . . , N} × R>0 ∪ {(0, 0)} where {Φ(ei ,ìi ) : 1 ≤ i ≤ t}
is a definable and asymptotic partition of {{M} × M n+m : M ∈ C }. Say for
1 ≤ i ≤ t,M ∈ C , and (b̄, ā) ∈M n+m thatM |= ÷i (b̄, ā)⇐⇒ (M, b̄, ā) ∈ Φ(ei ,ìi ).
Nowby the inductive hypothesis, for each i there is ∆i = {(di1, íi1), . . . , (diri , íiri )} ⊆
{0, . . . , Nn}×R>0∪{(0, 0)} and a definable asymptotic partition {Xij : 1 ≤ j ≤ ri}
of
{
{M} ×Mm : M ∈ C

}
corresplonding to ÷i . SayM |= ñij(ā) ⇐⇒ (M, ā) ∈

Xij ⇐⇒ h(÷i (M n , ā)) = (dij , íij ).
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Given M ∈ C and ā ∈ Mm , there is a unique function f : {1, . . . , t} → ù so
that for all i ∈ {1, . . . , t},M |= ñif(i)(ā). Notice that for each i , f(i) ∈ {1, . . . , ri},
so the set of all possible such f is finite. We now fix f and consider M and ā
compatible with f.
Define Si (ā) := {(z, x̄) ∈ M n+1 : M |= φ(z, x̄, ā) ∧ ÷i (x̄, ā)}. Then
φ(M n+1, ā) =

⊔t
i=1 Si (ā). We’ll show that

|Si (ā)| − ìi íif(i)|M |
dif(i)+ei

N = o

(
|M |

dif(i)+ei

N

)

Suppose that ei > 0 and dif(i) > 0 (the cases where ei = 0 or dif(i) = 0 are similar,
noting that if dif(i)=0 then for large enough M , we have |÷(M n , ā)| = íif(i), etc).
Let ε > 0. Let ε′ := Min{ε, 3ìiíif(i)}. Then for all sufficiently largeM , we have

∣∣∣∣|÷i (M n , ā)| − íif(i)|M |
dif(i)
N

∣∣∣∣ <
ε′

3ìi
|M |

dif(i)
N

and for all x̄ ∈ ÷i (M n , ā),
∣∣∣|φ(M, x̄, ā)| − ìi |M |

ei
N

∣∣∣ < ε′

3íif(i)
|M |

ei
N

As

|Si (ā)| =
∑

x̄∈÷i (M n ,ā)

|φ(M, x̄, ā)|

we have
(
íif(i)−

ε′

3ìi

)(
ìi−

ε′

3íif(i)

)
|M |

dif(i)+ei
N < |Si (ā)|

<

(
íif(i)+

ε′

3ìi

)(
ìi+

ε′

3íif(i)

)
|M |

dif(i)+ei
N

and so
∣∣∣|Si (ā)| − ìiíif(i)|M |

dif(i)+ei
N

∣∣∣ < ε|M |
dif(i)+ei
N s

as required.
Now let d :=Max

{
dif(i)+ei : i ∈{1, . . . , t}

}
,A :=

{
i ∈{1, . . . , t} : dif(i)+ei=d

}
,

and ì :=
∑
i∈A ìiíif(i). Then

∑
i∈A |Si (ā)| − ì|M | dN = o(|M | dN ). But for each

i /∈ A we have dif(i) + ei < d , so in fact
∑t
i=1 |Si (ā)| − ì|M | dN = o(|M | dN ), that is

|φ(M n+1, ā)| − ì|M | dN = o(|M | dN ).
As the set of possible f earlier was finite, it follows that the corresponding set of
(d, ì) is also finite. Notice also that each dif(i) ∈ {0, . . . , Nn}, and ei ∈ {0, . . . , N},
so d ∈ {0, . . . , N (n + 1)}.
Now we need to show definability. Consider some specific (d, ì), and let

{f1, . . . , fp} be the set of functions f which yield (d, ì). Define

æ(d,ì)(ȳ) :=

p∨

j=1

t∧

i=1

ñifj (i)(ȳ)s
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This defines
p⋃

j=1

t⋂

i=1

Xifj (i)

which is the desired set. �

We shall want to speak of dimension and measure in the context of infinite
ultraproducts of members of an asymptotic class:

2.3. Definition. Let C be anN -dimensional asymptotic class in a languageL , P
be an infinite ultraproduct of members of C , and φ(Pn, ā) be aL -definable set. Then
as Dφ is finite, for some unique (d, ì) ∈ Dφ we have

{M ∈ C : (M, ā(M )) ∈ Φ(d,ì)} ∈ U .
In this sense we write (dim,meas)(φ(Pn , ā)) := (d, ì).

2.4. Definition. Let C be a class of finiteL -structures. Then for each Q ∈ ù we
define C≥Q := {M ∈ C : |M | ≥ Q}, and

Th(C ) := {ó : ó is anL -sentence and ∃Q ∈ ù such that
∀M ∈ C≥Q we haveM |= ó}

2.5. Proposition. Let C be an asymptotic class. Then the following are equivalent:

1. For each φ(x̄) ∈ L there are (d, ì) ∈ Dφ andQ ∈ ù such that for allM ∈ C≥Q

we have h(φ(M n)) = (d, ì).
2. Th(C ) is complete.
3. For any infinite ultraproductsP1 and P2 of members of C we have that P1 ≡ P2.
Proof. The fact that (2) and (3) are equivalent is straightforward and holds for
any class of finiteL -structures.
Suppose now that (1) holds. Let P1 and P2 be infinite ultraproducts of members
of C , and let ó be anL -sentence. Then for i ∈ {1, 2} we have

Pi |= ó ⇔ h({x ∈ Pi : (x = x) ∧ ó}) = h(Pi )
But by (1) we know that there isQ ∈ ù where h({x ∈M : (x = x)∧ó}) is constant
across C≥Q. So in fact

P1 |= ó ⇔ forM ∈ C≥Q we have h({x ∈M : (x = x) ∧ ó}) = h(M )
⇔ P2 |= ó

Now suppose that (1) fails. Then there are φ(x̄) ∈ L and arbitrarily large
pairsM1,M2 ∈ C such that h(φ(M n1 )) 6= h(φ(M n2 )). As Dφ is finite, we may find
(d1, ì1), (d2, ì2) ∈ Dφ and unbounded sequences {M1j : j ∈ ù}, {M2j : j ∈ ù} ⊂
C so that for all j ∈ ù we have

h(φ(M1j)) = (d1, ì1) 6= (d2, ì2) = h(φ(M2j))
Now let U be a non-principal ultrafilter on ù and for i ∈ {1, 2} let Pi :=∏
j∈ùMij

/
U . By the definability of dimension/measure in C there are sentences

ó1, ó2 ∈ L where for i ∈ {1, 2} and allM ∈ C
M |= ói ⇔ h(φ(M n)) = (di , ìi )

Hence P1 6≡ P2 as P1 |= ó1 ∧ (¬ó2) but P2 |= (¬ó1) ∧ ó2. �
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For the reader’s convenience, we recall the definition of Shelah’s D-rank (see for
instance 5.1.13 of [9]):

2.6. Definition. Let M be a first order structure. We define the D-rank of a
formula φ(x̄, ā) recursively as follows:

• D(φ(x̄, ā)) ≥ 0 if φ(x̄, ā) is consistent.
• For all ordinals α, D(φ(x̄, ā)) ≥ α + 1 if there exist ø(x̄, ȳ) and a sequence
{c̄i : i ∈ ù}, indiscernible over ā, so that:
– For each i ∈ ù,M |= ø(x̄, c̄i )→ φ(x̄, ā)
– For each i ∈ ù, D(ø(x̄, c̄i )) ≥ α
– There exists k ∈ ù, so that {ø(x̄, c̄i ) : i ∈ ù} is k-inconsistent.

• For limit ordinals α, D(φ(x̄, ā)) ≥ α, if for all â < α, D(φ(x̄, ā)) ≥ â .
Recall that a first-order theory T is supersimple if and only if every formula in
every model of T has ordinal D-rank.
We now prove a result linking the dimension and D-rank in ultraproducts of
asymptotic classes. In forthcoming work in [4] we tackle the same question at the
more general level of infinite measurable structures (see 2.9 below). However we
retain the current proof here for its finitary nature.

2.7. Proposition. Let C be anN -dimensional asymptotic class, andP =
∏
M
/
U

an infinite ultraproduct of members of C . Then for all L -formulae φ(x̄, ȳ) and all
ā ∈ Pm , D(φ(Pn , ā)) ≤ dim(φ(Pn, ā)).
Proof. By shrinking C if necessary, we may assume that U is a non-principal
ultrafilter on C . We proceed by induction, and show that if D(φ(Pn , ā) ≥ r, then
also dim(φ(Pn, ā) ≥ r. Notice that the case r = 0 is trivial as it is just the condition
that φ(Pn, ā) is non-empty, and r = 1 is the condition thatU contains a set in which
φ(M n , ā(M )) is unbounded. Suppose now that the result holds for all r ≤ s , and
that D(φ(Pn, ā)) ≥ s + 1. Then there exist ø(x̄, z̄) and an indiscernible sequence
{c̄i : i ∈ ù} in Pm such that:

• For all i ∈ ù, P |= ø(x̄, c̄i )→ φ(x̄, ā)
• For all i ∈ ù, D(ø(x̄, c̄i )) ≥ s
• There exists k ∈ ù so that {ø(x̄, c̄i ) : i ∈ ù} is k-inconsistent.
Define

U ′
i := {M ∈ C : ø(M n , c̄i (M )) ⊆ φ(M n , ā(M ))},
V ′
i := {M ∈ C : dim(ø(M n , c̄i (M ))) ≥ s},

and for any distinct i1, . . . , ik ∈ ù define

Wi1,...,ik := {M ∈ C :
k∧

j=1

ø(M n , c̄ij (M )) = ∅}.

Then by the inductive hypothesis we know that U ′
i , V

′
i ,Wi1 ,...,ik ∈ U . Also by the

inductive hypothesis we know that

{M ∈ C : dim(φ(M n , ā(M )) ≥ s} ∈ U .
Hence either

V := {M ∈ C : dim(φ(M n , ā(M )) = s} ∈ U ,
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or

{M ∈ C : dim(φ(M n , ā(M )) ≥ s + 1} ∈ U .

Suppose for a contradiction that the former holds. For each Q ≥ k define

VQ :=
( Q⋂

i=0

U ′
i

)
∩
( Q⋂

i=0

V ′
i

)
∩
( ik=Q⋂

0≤i1<i2<···<ik

Wi1 ,...,ik

)
∩ V

Notice that VQ ∈ U and that VQ+1 ⊆ VQ. Also for convenience we write Ai :=
ø(M n , c̄i (M )) (whichM we’re working in will be clear from context). Now for all
M ∈ VQ and all i ≤ Q, the following hold: Ai ⊆ φ(M n, ā(M )), dim(Ai ) ≥ s , and
dim(φ(M n , ā(M ))) = s . Hence for all sufficiently largeM ∈ VQ, it must hold that
dim(Ai ) = s , and (by shrinking VQ if necessary) we may suppose that this holds
for allM ∈ VQ. Now,

|φ(M n , ā(M ))| ≥ |
Q⋃

i=0

Ai |

=

Q∑

i=0

|Ai | −
i2=Q∑

0≤i1<i2

|Ai1 ∩Ai2 |+ . . .

+ (−1)k
ik−1=Q∑

0≤i1<···<ik−1

|Ai1 ∩ · · · ∩ Aik−1 |

Moreover, by indiscernibility, for all j, i1, . . . , ij+1, i ′1, . . . , i
′
j+1 ≤ Q, we have

h(ø(Pn , c̄i1) ∩ · · · ∩ ø(Pn, c̄ij+1)) = h(ø(Pn, c̄′i1) ∩ · · · ∩ ø(Pn, c̄′ij+1)). Thus we
may find ṼQ ⊆ VQ in U , ì ∈ R>0, and (d0, ì0), . . . , (dk−2, ìk−2), so that for all
M ∈ ṼQ, we have h(φ(M n , ā(M ))) = (s, ì), and for all j ∈ {0, . . . , k − 2} and all
i1, . . . , ij+1 ∈ ù, we have h(Ai1 ∩ · · · ∩ Aij+1) = (dj , ìj).
Thus for all ε > 0 and all sufficiently largeM ∈ ṼQ ,

|φ(M n, ā(M ))| ≥ (Q + 1)(ì0 − ε)|M |
d0
N − (Q + 1)Q

2
(ì1 + ε)|M |

d1
N + . . .

+ (−1)k (Q + 1)Q . . . (Q + 2− k)
(k − 1)!

(
ìk−2 + (−1)k−1ε

)
|M |

dk−2
N

Claim.

s = d0 > d1 > · · · > dk−2 > −1

Proof of Claim. We know that s = d0 ≥ d1 ≥ · · · ≥ dk−2 ≥ −1. Sup-
pose for a contradiction that strict inequalities do not hold throughout. Let

l := Max{l ′ : dl ′ = dl ′+1}. Then for all ε > 0 and all sufficiently largeM ∈ ṼQ,

(ìl + ε)|M |
dl
N ≥ |A0 ∩ · · · ∩ Al | ≥ |

Q⋃

i=l+1

A0 ∩ · · · ∩Al ∩ Ai |
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Now using the inclusion/exclusion principle we get

(ìl + ε)|M |
dl
N ≥

Q∑

i=l+1

|A0 ∩ · · · ∩ Al ∩Ai |

−
i2=Q∑

l+1≤i1<i2

|A0 ∩ · · · ∩Al ∩ Ai1 ∩ Ai2 |+ . . .

+ (−1)k−1−l
ik−2−l=Q∑

l+1≤i1<...ik−2−l

|A0 ∩ · · · ∩ Al ∩ Ai1 ∩ · · · ∩ Aik−2−l |

So

(ìl + ε)|M |
dl
N ≥ (Q − l)(ìl+1 − ε)|M |

dl
N −

(
Q − l
2

)
(ìl+2 + ε)|M |

dl+2
N + . . .

+ (−1)k−1−l
(
Q − l
k − l − 2

)
(ìk−2 + (−1)k−2−lε)|M |

dk−2
N (1)

However for large enough Q and small enough ε, we have (Q − l)(ìl+1 − ε) >
ìl + ε, and then by taking large enoughM ∈ ṼQ we may contradict equation (1),
as dl > dl+2 > · · · > dk−2. QED Claim

A similar argument now completes the proof: we have, for all Q ∈ ù, all ε > 0
and all sufficiently largeM ∈ ṼQ

(ì+ ε)|M | sN ≥ |φ(M n , ā(M ))|

≥ (Q + 1)(ì0 − ε)|M | sN −
(
Q + 1

2

)
(ì1 + ε)|M |

d1
N + . . .

+ (−1)k
(
Q + 1

k − 1

)(
ìk−2 + (−1)k−1ε

)
|M |

dk−2
N

where s > d1 > · · · > dk−2, so just as in the proof of the claim, for large enough Q,
small enough ε, and large enoughM ∈ ṼQ, we have a contradiction. �

2.8. Corollary. Any ultraproduct of an N -dimensional asymptotic class is super-
simple of D-rank at most N .

Proof. Simply apply the previous proposition to x = x. �

There is a broader class of infinite structureswhich admit dimension andmeasure,
which have been studied in [5]. We give the definition here:

2.9. Definition. An infinite L -structure M is measurable if there is a function
h : Def(M ) → (ù×R>0)∪{(0, 0)} (we write h(X ) = (dim(X ),meas(X )) such that
the following hold :

1. For each L -formula φ(x̄, ȳ) there is a finite set D ⊂ (ù × R>0) ∪ {(0, 0)}, so
that for all ā ∈Mm we have h(φ(M n , ā)) ∈ D.

2. If φ(M n , ā) is finite then h(φ(M n , ā)) = (0, |φ(M n , ā)|).
3. If φ(M n , ā) is a definable set andø(x̄, ȳ) and {c̄i : i ∈ ù} are indiscernible over
ā such thatM |= φ(x̄, c̄i ) → φ(x̄, ā), dim(φ(x̄, c̄i )) ≥ n, and for some k the
collection {φ(x̄, c̄i ) : i ∈ ù} is k-inconsistent, then dim(X ) ≥ n + 1.
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4. Let X,Y ∈ Def(M ) and f : X → Y be a definable surjection. Then there is
r ∈ ù and (d1, ì1), . . . , (dr , ìr) ∈ (ù × R>0) ∪ {(0, 0)} so that if

Yi := {ȳ ∈ Y : h(f−1(ȳ)) = (di , ìi )},

thenY = Y1 ∪ · · ·∪Yr is a partition ofY into non-empty disjoint definable sets.
Let h(Yi ) = (ei , íi ) for i ∈ {1, . . . , r}. Also let c := Max{d1+e1, . . . , dr+er},
and suppose this maximum is attained by d1 + e1, . . . , ds + es . Then h(X ) =
(c, ì1í1 + · · ·+ ìsís).

5. For everyL -formula φ(x̄, ȳ) and all (d, ì) ∈ Dφ , the set

{ā ∈Mm : h(φ(M n , ā)) = (d, ì)}

is ∅-definable.
IfX ∈ Def(M ) and h(X ) = (d, ì), we call d the dimension ofX andì themeasure
of X , and h the measuring function.
We say that a complete theory T is measurable if it has a measurable model.

Notice that 3 above ensures that for all measurable structures M and all X ∈
Def(M ) we have D(X ) ≤ dim(X ). In forthcoming work (see [4]) it is shown that
this condition in fact follows from the others.

§3. New classes from old. Consider now a weak asymptotic class C in a language
L , and auniformly definable setXM for eachM ∈ C . Iwant to treat {XM : M ∈ C }
as a class of finite structures. First we have to consider which first-order languages
are appropriate for this class. There are many languages one might choose subject
to the context, but the following gives a minimum criterion that any of them should
satisfy.

3.1. Definition. Let C be a weak asymptotic class C in a language L , and let
φ(x̄, ȳ) be anL -formula with l(x̄) = n and l(ȳ) = m. Define

φ(C ) := {φ(M n , ā) : M ∈ C , ā ∈Mm}

Let L ′ be a first-order language such that φ(C ) is a class of L ′-structures. We say
L ′ is suitable if for any ø′(z̄ ′, w̄ ′) ∈ L ′ (say l(z̄ ′) = s and l(w̄ ′) = r′) there is
ø(z̄ , w̄) ∈ L (where l(z̄) = n · s and l(w̄) = r) so that for every X = φ(M n , ā) ∈
φ(C ) and every b̄′ ∈ X r′ there is b̄ ∈M r so that ø′(X s , b̄′) = ø(M n·s , b̄).

3.2. Lemma. If C is an N -dimensional weak asymptotic class, and φ(x̄, ȳ) is an
L -formula with l(x̄) = n and l(ȳ) = m. Then φ(C ) is a weak asymptotic class in
any suitable languageL ′.

Proof. For (d, ì) ∈ Dφ define φ(C )(d,ì) := {φ(M n , ā) : (M, ā) ∈ Φ(d,ì)}. AsDφ
is finite, it is sufficient to show that φ(C )(d,ì) is a d -dimensional weak asymptotic

class inL ′, under the functionH (ø(φ(M n , ā), b̄)) := (e, í
ì
e
d
), where h(ø(M n , b̄)∩

φ(M n , ā)) = (e, í)). For convenience we will suppress the parameters ā occuring
in φ.
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Let ε > 0 and choose ε1 > 0 and ε2 > 0 so that ε1 <
ì
2 ,
∣∣∣ í±ε2
(ì−ε1)

e
d
− í

ì
e
d

∣∣∣ < ε, and
∣∣∣ (í±ε2)(1−

2ε1
ì )

e
d

(ì−ε1)
e
d

− í

ì
e
d

∣∣∣ < ε. Then for large enoughM ∈ C we have
∣∣∣|φ(M n)| − ì|M | dN

∣∣∣ < ε1|M | dN (2)

and
∣∣|(φ ∧ ø)(M n)| − í|M | eN

∣∣ < ε2|M | eN (3)

Clearly (2) gives that

|M | dN < 1
ì

(
|φ(M n)|+ ε1|M | dN

)

and so using (2) again

|M | dN < 1
ì

(
|φ(M n)|+ ε1

(
1

ì

(
|φ(M n)|+ ε1|M | dN

)))

Continuing in a similar way, we find that for all r ∈ ù we have

|M | dN < 1
ì

(
1 +
ε1
ì
+ · · ·+ ε1

r

ìr

)
|φ(M n)|+ ε1

r+1

ìr+1
|M | dN

and so taking the limit as r → ∞ we get that

|M | dN < 1

ì− ε1
|φ(M n)| (4)

and substituting this back into (2), we get

ì|M | dN > |φ(M n)| − ε1|M | dN >
(
1− ε1
ì− ε1

)
|M | dN

so by this and (4) we get

1− 2ε1
ì

ì− ε1
|φ(M n)| < |M | dN < 1

ì− ε1
|φ(M n)|

and therefore
(
1− 2ε1

ì

) e
d

(ì− ε1) ed
|φ(M n)| ed < |M | eN < 1

(ì− ε1) ed
|φ(M n)| ed

Thus using (3)

(í − ε2) ·
(
1− 2ε1

ì

) e
d

(ì− ε1) ed
|φ(M n)| ed < |(φ ∧ ø)(M n)| < í + ε2

(ì− ε1) ed
|φ(M n)| ed

and by choice of ε1 and ε2,(
í

ì
e
d

− ε
)
|φ(M n)| ed < |(φ ∧ ø)(M n)| <

(
í

ì
e
d

+ ε

)
|φ(M n)| ed

as required. �

Now we look at the definable quotients of asymptotic classes. Again, we first
have to consider the question of which languages to use:
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3.3. Definition. Let C be anN -dimensional asymptotic class, andE(x̄1, x̄2, ȳ) an
L -formula with l(x̄1) = l(x̄2) = n, l(ȳ) = m.

C /E := {M n/Eā : M ∈ C and E(x̄1, x̄2, ā) defines an equivalence
relation Eā onM

n}
Let L ′ be a first-order language such that C /E is a class of L ′-structures. We say
thatL ′ is suitable if for every ø′(z̄ ′, w̄ ′) ∈ L ′ (say l(z̄ ′) = s and l(w̄ ′) = r′) there is
ø(z̄ , w̄) ∈ L (where l(z̄) = n ·s and l(w̄) = r) so that for everyX =M n/Eā ∈ C /E
and every b̄′ ∈ X r′ there is b̄ ∈M r so that ø′(X s , b̄′) = ø(M n·s , b̄)/Eā .
Also define L ′

E to be the disjoint union of L and L
′, along with the natural

projection map. We form a class ofL ′
E -structures in the obvious way:

CE := {(M, ā) ∪ (M n/Eā) : E(x̄1, x̄2, ā) defines an equivalence relation Eā onM n}
3.4. Lemma. Let C be an N -dimensional asymptotic class, and E(x̄1, x̄2, ȳ) an
L -formula with l(x̄1) = l(x̄2) = n, l(ȳ) = m. Then C /E is a weak Nn-dimensional
asymptotic class in any suitable languageL ′, and CE is anN -dimensional asymptotic
class in the corresponding languageL ′

E .

Proof. We consider M ∈ C and ā ∈ M r , where E(x̄1, x̄2, ā) defines an equiv-
alence relation on M n . Consider the definable set φ(M n, b̄), and suppose that
h(φ(M n , b̄)) = (d, ì). Let αφ := |φ(M n, b̄)/Eā |. Consider first the case where
each Eā-class in φ(M n , b̄) has the same dimension and measure, (e, í), say. Notice
that e ≤ d . Let ε > 0. Let ε1 > 0 and ε2 > 0 be such that

∣∣ì±ε1
í−ε2

− ì
í

∣∣ < ε and
∣∣ì−2ε2· ìí ±ε1

í−ε2
− ì
í

∣∣ < ε.
Then for large enoughM ∈ C , we have

(ì− ε1)|M | dN < |φ(M n , b̄)| < (ì+ ε1)|M | dN
and

(αφ · í − αφ · ε2)|M | eN < |φ(M n , b̄)| < (αφ · í + αφ · ε2)|M | eN
So

(αφ · í − αφ · ε2)|M | eN < |φ(M n , b̄)| < (ì+ ε1)|M | dN
and thus

αφ <
(ì+ ε1)

í
|M | d−eN + αφ ·

ε2
í

(5)

and similarly

αφ >
(ì− ε1)
í

|M | d−eN − αφ ·
ε2
í

(6)

Hence (5) gives us that

αφ <
(ì+ ε1)

í
|M | d−eN +

(
(ì+ ε1)

í
|M | d−eN + αφ ·

ε2
í

)
· ε2
í

and similarly for all r ∈ ù

αφ <
(ì+ ε1)

í

(
1 +
ε2
í
+ · · ·+ ε2

r

ír

)
|M | d−eN + αφ ·

ε2
r+1

ír+1
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and thus taking the limit as r → ∞

αφ <

(
ì+ ε1
í − ε2

)
|M | d−eN

This, with (6) gives us that

αφ >
(ì− ε1)
í

|M | d−eN −
(
ì+ ε1
í − ε2

)
|M | d−eN · ε2

í
=

(
ì− ε1 − 2ε2 · ìí

í − ε2

)
|M | d−eN

Thus (
ì− ε1 − 2ε2 · ìí

í − ε2

)
|M | d−eN < αφ <

(
ì+ ε1
í − ε2

)
|M | d−eN

and so by choice of ε1 and ε2,∣∣∣αφ −
ì

í
|M | d−eN

∣∣∣ < ε|M | d−eN

Now we turn to the case where the Eā-classes in φ(M n, b̄) may have different
dimensions and measures. However as these classes are all defined by the L -
formula φ(x̄, b̄) ∧ E(x̄, ū, ā) for varying parameters ū ∈ φ(M n , b̄), there are only
finitelymanydimension/measure pairs that the classes can take: (e1, í1), . . . , (es , ís )
say. Say M |= ø(ej ,íj )(ū, ā, b̄) ⇔ h(φ(M n, b̄) ∧ E(M n , ū, ā)) = (ej , íj). Let Yj
be the union of all the Eā -classes in φ(M n , b̄) of dimension/measure (ej , íj), and

αj := Yj/Eā . Then Yj is definable by φ(x̄, b̄)∧∃ū(E(x̄, ū, ā)∧øej ,íj (ū, ā, b̄)), and
α1 + · · ·+ αs = αφ. Say h(Yj) = (dj , ìj).
Let ε > 0. Then by the result obtained above, we have for large enoughM ∈ C ,

∣∣∣∣αj −
ìj
íj

|M |
dj−ej
N

∣∣∣∣ <
ε

s
|M |

dj−ej
N

so
s∑

j=1

−ε
s

|M |
dj−ej
N < αφ −

s∑

j=1

ìj
íj

|M |
dj−ej
N <

s∑

j=1

ε

s
|M |

dj−ej
N

Now set d ′ := Max{dj − ej : 1 ≤ j ≤ s}, A := {j : 1 ≤ j ≤ s & dj − ej = d ′},
and ì′ :=

∑{ìjíj : j ∈ A}. Then
∑

j∈A

−ε
s

|M | d
′

N +
∑

j /∈A

(−ε
s
+
ìj
íj

)
|M |

dj−ej
N < αφ − ì′|M | d

′

N

<
∑

j∈A

ε

s
|M | d

′

N +
∑

j /∈A

(
ε

s
+
ìj
íj

)
|M |

dj−ej
N

and since |A| ≤ s and for j /∈ A we have dj − ej < d ′ it follows that for large
enoughM ∈ C

∣∣∣αφ − ì′|M | d
′

N

∣∣∣ < ε|M | d
′

N

Furthermore as s is fixed and for each j ∈ {1, . . . , s} the dimension/measure sets
for Yj are finite, it follows that there are only finitely many possibilities for (d ′, ì′)
above.
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Now we need to show that the set of (b̄, ā) ∈M r+m such that h(φ(M n, b̄)/Eā) =
(d ′, ì′) is uniformly definable across C . We know that for any
(d ′j , ì

′
j) ∈ {0, . . . , Nn} × R>0 ∪ {(0, 0)} the set of (b̄, ā) ∈ M r+m such that

h(Yj) = (d
′
j , ì

′
j) is uniformly definable across C . Thus for any assignment of

(d ′j , ì
′
j) so that ì

′ =
∑{ìjíj : 1 ≤ j ≤ s & d

′
j − ej = d ′} the set of (b̄, ā) ∈M r+m

which yield h(Yj) = (d
′
j , ì

′
j) for every j, is also uniformly definable across C . As

there are only finitely many such assignments the result follows.
We have shown that, for definable subsets ofM n/Eā , the asymptotic behaviour
is definable. Clearly then this holds for definable subsets ofM ∪M n/Eā , and for
higher powers we may as usual appeal to proposition 2.2. �

The following definitions are fairly standard:

3.5. Definition. LetM andN be structures in first-order languagesLM andLN
respectively. We say thatM is parameter-interpretable (p-interpretable) inN if there
are r ∈ ù, an LN -definable set X ⊆ N r , a LN -definable equivalence relation E on
X , and a map f : M → X/E, andLN -definable subsets of Cartesian powers of X/E
which which interpret the constant, relation, and function symbols of LM , in such a
way thatf is anLM -isomorphism. We writeM ∗ for theLM -structure induced onX .
Suppose now that M is p-interpretable in N , via f : M → M ∗, and N is p-
interpretable inM via g : N → N ∗. Then g induces anLM -isomorphism g∗ : M∗ →
M∗∗ for an LM -structureM

∗∗ interpreted in N ∗ and hence inM . Similarly we get
an LN -isomorphism f∗ : N∗ → N∗∗ where N ∗∗ is an LN -structure interpreted in
M∗ and hence in N . If the isomorphisms g∗f : M →M ∗∗, and f∗g : N → N ∗∗ are
definable inM and N respectively, then we say thatM and N are p-bi-interpretable.
We say thatM is ∅-bi-interpretable with N if no parameters fromM are involved.
Notice that being ∅-bi-interpretable is not symmetric. We rework these in our
context:

3.6. Definition. Let CM and CN be classes of structures in first-order languages
LM and LN respectively. If there is an injection i : CM → CN so that for each
M ∈ CM , M is p-interpretable in i(M ), so that the LM -structure M ∗ (i.e X , E,
and the LM -symbols) is uniformly defined across CM , then we say that CM is p-
interpretable in CN .
Now if i : CM → CN is a bijection and for eachM ∈ CM ,M is p-bi-interpretable
with i(M ), in such away that the structures M ∗, N∗ and the maps g∗f and f∗g
(as above) are uniformly defined across CM , then we say that CM and CN are p-bi-
interpretable. Again we say that CM is ∅-bi-interpretable with CN if no parameters
from CM are involved.

3.7. Lemma. If CM is p-interpretable in CN , and CN is an asymptotic class, then
CM is a weak asymptotic class. Moreover if CM is ∅-bi-interpretable with CN , and CN
is an asymptotic class, then so is CM .
Similarly ifM andN are infinite structures,M is ∅-bi-interpretable withN , andN
is measurable, then so isM .

Proof. For the first statement, 3.2 and 3.4 give immediately that {M ∗ : M ∈ CM}
is a weak asymptotic class, and hence so is CM .
Now for the second statement we know that CM is a weak asymptotic class, and
by 3.4 again that {i(M ) ∪M ∗ : M ∈ CM } is an asymptotic class. Hence given
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φ ∈ LM and (d, ì) ∈ D as in definition 2.1, there is φ(d,ì)(ȳ) ∈ LN so that
(M, ā) ∈ Φ(d,ì) if and only if i(M ) |= φ(d,ì)(f(ā)). Of course this holds if and only
if i(M )∗ |= φ(d,ì)(g∗f(ā)), and now as this takes place inM and theLN -symbols
are all interpreted in LM , we may find a parameter-free LM -formula ø(d,ì)(ȳ) so
thatM |= ø(d,ì)(ā) if and only if i(M )∗ |= φ(d,ì)(g∗f(ā)).
The same argument, along with Proposition 5.10 of [5], yields the result for
measurable structures. �

3.8. Corollary. If CM and CN , in finite languagesLM andLN respectively, are
p-bi-interpretable, and CN is an asymptotic class, then there is an expansion L ′

M
of

LM by finitely many constants, and for each M ∈ CM an expansion M ′ to L ′
M
so

that C ′
M
:= {M ′ : M ∈ CM} is an asymptotic class.

Proof. Form L ′
M
by adding constants to interpret the parameters needed to

define N∗ and g∗f uniformly across CM , and then apply proposition 3.7. �

§4. Examples. The main theorem of [1] is exactly the statement that the class of
finite fields forms a 1-dimensional asymptotic class.
Similarly in [7] it is shown that any family of finite difference fields

C(m,n,p) := {(Fpnk+m , ók) : k ∈ ù}

where m, n ∈ ù, p ∈ ù is prime, and ó is the Frobenius automorphism, forms an
asymptotic class. Notice that in ultraproducts the automporphism interpreted by∏
k∈ù ó

k
/
U is a solution of óm · ôn = é, and hence, in the terminology of Ryten, is

a fractional power of the Frobenius automorphism.
Now in [8] it has been shown that each family of finite simple groups of fixed
Lie-rank is p-bi-interpretable (in the sense of definition 3.6) with either the class of
finite fields or one of the classes Cm,n,p as above. Thus by 3.7 and 3.8 each family of
finite simple groups is an asymptotic class. For more details see [8].
We now turn to the Lie-coordinatizable structures. This is a rich class of ℵ0-
categorical supersimple structures which has been thoroughly studied in [2]. One
of the main results is that the algebraic characterisation (in terms of coordinatizing
Lie-geometries) is equivalent to an abstract notion of being smoothly approximable,
that is in a strong sense being the infinite limit of a class of finite structures (or
envelopes). A basic example is that an ℵ0-dimensional vector space is the union of a
sequence of finite-dimensional vector spaces (the envelopes) each embedded in the
next. For more details see [2].

4.1. Proposition. Let M be a Lie-coordinatized structure. Then there exists a
family E of finite envelopes forM so that E smoothly approximatesM , and E is a
rk(M )-dimensional asymptotic class.

Proof. Let E be a maximal family of envelopes forM such that for each dimen-
sion corresponding to an orthogonal space, the parity of the dimension is constantly
even across E . We shall refine E in due course.
If d̄ = (d1, . . . , dr) is the vector of dimensions assigned by E to each canonical
projective geometry respectively, define ñ′(dj) := (−√

qj)dj where qj is the size of
the base field of the jth canonical projective geometry, or in the disintegrated case
ñ′(dj) :=

√
dj



14 RICHARD ELWES

Thenbyproposition 5.2.2 of [2], there are s∈ù, a1, . . . , as ∈R, andni1, . . . , nir ∈ù
so that for each E ∈ E ,

|E| =
s∑

i=1

ai (ñ
′(d1))

ni1 · · · · · (ñ′(dr))nir

Moreover the proof of 5.2.2 of [2] actually gives that for any definable subset D
ofM , there are b1, . . . , bs ∈ R, and mi1, . . . , mir ∈ ù so that for any E ∈ E which
contains the parameters for D,

|DE | =
s∑

i=1

bi (ñ
′(d1))

mi1 · · · · · (ñ′(dr))mir

(It may not be true that the number of terms in the expression for |D| is the same
as that for |E|, but by setting any extra bi or ai to zero, we may assume that both
these numbers are equal to s .)
For each i ≤ r, define ni := ni1 + · · · + nir , and mi := mi1 + · · · + mir . Then,
by reordering the ai and bi if necessary, we may suppose that that N := n1 = n2 =
· · · = nl > ni for i > l , and e := m1 = m2 = · · · = mk > mi for i > k. Notice
that proposition 5.2.2 of [2] gives that ai > 0 for i ≤ l , that bi > 0 for i ≤ k, that
N = 2rk(M ), and that e = 2rk(D).
With this in mind, if necessary by changing the signs of ai for i > l , and bi for
i > k, andbydefiningñ(dj) := (

√
qj)dj where qj is the size of the base field of the jth

canonical projective geometry, or in the disintegrated case ñ(dj) := ñ′(dj) =
√
dj ,

we may rewrite this equation as

|DE |
|E| eN =

∑s
i=1 bi(ñ(d1))

mi1 · · · · · (ñ(dr))mir(∑s
i=1 ai (ñ(d1))

ni1 · · · · · (ñ(dr))nir
) e
N

But let us suppose for a moment that we could allow the dj to range over the

positive real numbers. Then for each x ∈ R>0 we would define d̄x := (d1x , . . . , drx)
where djx := logqj (x

2), unless the jth canonical projective geometry is disinte-

grated, in which case, djx := x2. Then we would find that for corresponding
notional Ex and Dx := DEx ,

|Dx |
|Ex | eN

= αx :=

∑s
i=1 bix

mi1 · · · · · xmir
(∑s

i=1 aix
ni1 · · · · · xnir

) e
N

=

∑k
i=1 bix

e +
∑r
i=k+1 bix

mi

(
∑l
i=1 aix

N +
∑r
i=l+1 aix

ni )
e
N

=

∑k
i=1 bi +

∑r
i=k+1 bix

mi−e

(
∑l
i=1 ai +

∑r
i=l+1 aix

ni−N )
e
N

→ (b1 + · · ·+ bk)
(a1 + · · ·+ al )

e
N

as x → ∞ since for i > k we havemi − e < 0 and for i > l we have ni −N < 0.
Now we will approximate this behaviour by suitable choice of natural-number
valued d̄ . For x ∈ R we write α(x) to mean to the rounding of x to the nearest
integer, and â(x) := x − α(x). Then for each Q ∈ ù, we may pick an even natural
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number æQ ∈ ù so thatdefining εj := â(æQ ·logqj (Q2)) for each j corresponding to a
canonical projective geometry, − 1

Q < εj <
1
Q . (This is proved by a straightforward

induction on the number of such geometries, by considering the image of the map
n 7→ â(n · logq(Q2)) as a subset of

[
1
2 ,
1
2

]
.)

Now define d̄Q := (d1Q , . . . , drQ) where djQ := α(æQ · logqj (Q2)) unless the jth
canonical projective geometry is disintegrated, in which case we let djQ := Q

2æQ , and

εj := 0. Notice that d̄ is independent ofD. Then we find for each non-disintegrated

canonical projective geometry ñ(djQ) = q
1
2djQ
i = q

1
2 (æQ ·logqj (Q

2)−εj)

j = QæQ ·q−
εj
2

j , and

similarly for each disintegrated projective geometry ñ(djQ) = (djQ)
1
2 = (Q2æQ )

1
2 =

QæQ . We adopt the convention that if the jth canonical projective geometry is
disintegrated then qj := 1.

|DQ |
|EQ | eN

=

∑s
i=1 biñ(d1Q)

mi1 · · · · · ñ(drQ)mir(∑s
i=1 aiñ(d1Q)

ni1 · · · · · ñ(drQ)nir
) e
N

=

∑s
i=1 bi(q

−
ε1
2

1 QæQ )mi1 · · · · · (q−
εr
2

r QæQ )mir
(∑s

i=1 ai(q
−
ε1
2

1 QæQ )ni1 · · · · · (q−
εr
2

r QæQ )nir
) e
N

=

∑k
i=1 biq

−
ε1mi1
2

1 · · · · · q−
εrmir
2

r
(∑l

i=1 aiq
−
ε1ni1
2

1 · · · · · q−
εr nir
2

r

) e
N

+ o(Q− 1
N )

Thus as Q → ∞, each εj → 0, so each q−
εjmij
2

j → 1 and q−
εj nij
2

j → 1. Therefore
|D|

|E|
e
N

→ (b1+···+bk )

(a1+···+al )
e
N
, as required. So we may say (in the sense of definition 2.1) that

h(D) = ( e2 ,
(b1+···+bk )

(a1+···+al )
e
N
).

Notice that the dimension/measure of a set is determinedby the polynomialwhich
gives its size, and for any envelopes E, E ′ both containing ā, that h(φ(En , ā)) =
h(φ(E ′n, ā)) as they are given by the same polynomial (again see the beginning of
the proof of 2.2 in [2]). For any E ∈ E , let ∼ be the equivalence relation on Em
given by ȳ ∼ ȳ′ : ⇔ |φ(En , ȳ)| = |φ(En , ȳ′)|. Then in large enough E each ∼-
class corresponds to a polynomial for |φ(En, ā)|. Then in anyE ∈ E , the∼-classes
are invariant under Aut(E), hence they are definable in E over ∅. But as M is
smoothly approximable (see 5 and 7 of definition 2.1.1 of [2]), it follows that the
∼-classes are definable in M . Then as M is ℵ0-categorical, there are only finitely
many possibilities for tpM (ȳ). This shows that the set of ∼-classes, and hence the
set of polynomials, and thus the set of dimension-measure pairs for φ(x̄, ȳ), is finite.
Finallywemust show thatdimension/measure is definable. But theℵ0-categoricity
of M yields that the ∼-classes are ∅-definable, given (di , ìi ) there is a disjunction
ñ(ȳ) of the ñj(ȳ) so that h(φ(En, ā)) = (di , ìi ) ⇔ E |= ñ(ā)): (this corresponds
to different polynomials which yield the same measure).
Now if ā ∈ ñ(Mm) then for all sufficiently large E ∈ E , we will have that

ā ∈ ñ(En) by smooth approximability. This shows that the dimension and measure
of φ(En , ā) is uniformly definable in all sufficiently large E. Then to deal with the
finite number of exceptionally small E, for each (di , ìi ), we form the disjunction ñ′
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of ñ with finitely many formulae of the form Th(E) ∧ tpE(ā) where ā ∈ Em is such
that h(φ(En , ā)) = (di , ìi ). �

4.2. Corollary. Lie-coordinatizable structures are measurable.

Proof. Given a definable setD in a Lie-coordinatized structure, take a collection
of envelopes E as in 4.1, and simply define h(D) as in the proof of 4.1 above. The
fact that this function satisfies definition 2.9 is immediate from the fact that E is an
asymptotic class.
Now a structure is Lie-coordinatizable if it is ∅-bi-interpretable with a Lie-
coordinatized structure. By 3.7 the result follows. �

In definition 2.1 we deliberately allow the error term of the asymptotic estimates
to be as large as possible. In the case of finite fields [1] gives (as in the Lang-Weil

estimates) an error term of C |M |d− 1
2 for some constant C ∈ R>0. We might

therefore define a Lang-Weil class to be an N -dimensional asymptotic class where

we have error terms at least as tight as C |M | dN− 1
2N . In some cases though we can

do better than this:

4.3. Proposition. If a Lie-coordinatized structureM as in the above proposition
involves only one canonical projective geometry over a finite field, Fq say, then, setting
N = 2rk(M ), we get that for any definable set D there exists C > 0 so that for all
sufficiently large E ∈ E ,

∣∣∣|D| − meas(D)|E|
dim(D)
N

∣∣∣ < C |E|
dim(D)
N − 1

N

Proof. For r ∈ R and n ∈ ù we’ll use the notation rCn to denote the generalised
binomial coefficient r·(r−1)·····(r−n+1)n! .

Say |E| =∑si=1 ai(
√
q)dni , and |D| =∑si=1 bi (

√
q)dmi , wheren1 > n2 > · · · > ns ,

and m1 > m2 > · · · > ms . Then for constants ci ∈ R, and c′, c′′, c′′′, c′′′′, c′′′′′ > 0,
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and large enough d , we get
∣∣∣∣|D|−

b1

a
m1
n1

1

|E|
m1
n1

∣∣∣∣

=

∣∣∣∣
s∑

i=1

bi(
√
q)dmi−b1(

√
q)dm1

(
1+

s∑

i=2

ci(
√
q)d (ni−n1)

)m1
n1

∣∣∣∣

=

∣∣∣∣
s∑

i=2

bi(
√
q)dmi−b1(

√
q)dm1

( ∞∑

k=1

(
m1
n1 Ck)

( s∑

i=2

ci(
√
q)d (ni−n1)

)k)∣∣∣∣

and as mi ≤ m1 − 1 and ni ≤ n1 − 1 for i ∈ {2, . . . , s}

≤
∣∣∣∣c

′(
√
q)d (m1−1)+b1(

√
q)dm1

( ∞∑

k=1

(
m1
n1Ck)

(
c′′(

√
q)−d )

)k)∣∣∣∣

≤
∣∣∣∣c

′(
√
q)d (m1−1)+b1c

′′(
√
q)d (m1−1)

( ∞∑

k=0

(
m1
n1Ck+1)

(
c′′(

√
q)−d )

)k)∣∣∣∣

≤
∣∣∣∣c

′(
√
q)d (m1−1)+b1c

′′(
√
q)d (m1−1)

(m1
n1

∞∑

k=0

(
(
m1
n1

−1)
Ck

)(
c′′(

√
q)−d )

)k)∣∣∣∣

≤
∣∣∣∣c

′(
√
q)d (m1−1)+c′′′(

√
q)d (m1−1)

(
1+c′′(

√
q)−d

)m1
n1

−1
∣∣∣∣

≤ c′′′′(√q)d (m1−1)=c′′′′((√q)dn1)
m1−1
n1 ≤ c′′′′′|E|

m1−1
n1 �

§5. Dimension versus D-rank. In proposition 2.7 we showed that in asymptotic
classes, D-rank is bounded above by dimension. The following demonstrates that
this inequality may be strict:

5.1. Example. LetL := 〈R〉 where R is a unary predicate. For each n ∈ ù,

Mn := {0, . . . , n − 1} × {0, . . . , n − 1}
R(Mn) := {(0, i) : 0 ≤ i ≤ n − 1}

Then if C := {Mn : n ∈ ù}, C is a 2-dimensional class, but any infinite ultraproduct
P is just a set where R picks out an infinite/co-infinite subset, so D(P) = 1.

We now turn our attention to those circumstances in which equality does hold.

5.2. Definition. If C is anN -dimensional asymptotic class in a languageL which
satisfies:
for every φ(x, ȳ) ∈ L and every r ∈ ù, there are k,Q ∈ ù, where for each
M ∈ C≥Q and each ā ∈ Mm , there are ø(x, z̄) ∈ L , where l(z̄) = s say, and
{c̄1, . . . , c̄r} ⊆M s so that if dim(φ(M, ā)) = d > 0, then

• for each i ∈ {1, . . . , r}, ø(M, c̄i ) ⊆ φ(M, ā)
• for each i ∈ {1, . . . , r}, dim(ø(M, c̄i )) = d − 1
• {ø(x, c̄i) : 1 ≤ i ≤ r} is k-inconsistent

then we say that C is imbricated.
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Moreover, given φ(x, ȳ) ∈ L , as r ranges over ù,M over C≥Q , and ā overMm , if
the set of ø(x, z̄) and k used can be chosen to be finite, then we say that C is closely
imbricated.

Notice that imbrication is a condition just on formulae in one variable (plus
parameters). The following proposition however shows that (as in 2.2) it has con-
sequences in higher powers, and gives the relationship between (close) imbrication,
D-rank, and dimension.

5.3. Proposition. If C is such that for any infinite ultraproduct P of members of
C , any φ(x, ȳ) ∈ L , and any ā ∈ Pm , we have dim(φ(P, ā)) = D(φ(P, ā)), then C
is imbricated.
Conversely if C is closely imbricated, then for any infinite ultraproductP, φ(x̄, ȳ) ∈
L , and ā ∈ Pn, we have dim(φ(Pn, ā)) = D(φ(Pn, ā)).
Proof. Suppose first that C is not imbricated. Then there exist φ(x, ȳ) ∈ L and
r ∈ ù so that for all k,Q ∈ ù there areMk,Q ∈ C≥Q and āk,Q ∈Mmk,Q , where for all
ø(x, z̄) ∈ L and all {c̄1, . . . , c̄r} ⊆ M s , at least one of the imbrication properties
above fails. Let U be a non-principal ultrafilter on ù, and let P :=

∏
Q∈ùMQ,Q/U ,

and ā :=
∏
Q∈ù āQ,Q/U . Suppose now for a contradiction that dim(φ(P, ā)) =

D(φ(P, ā)). Then we can find k ∈ ù, ø(x, z̄) ∈ L , and {c̄i : i ∈ ù} ⊆ Ps so that:
• for each i ∈ ù, P |= ø(x, c̄i )→ φ(x, ā)
• for each i ∈ ù, D(ø(P, c̄i )) = D(φ(P, ā))− 1
• {ø(x, c̄i) : i ∈ ù} is k-inconsistent
Notice that by 2.7 the second of these forces dim(ø(P, c̄i )) ≥ dim(φ(P, ā)) − 1.
But then there must exist U ∈ U where for all Q ∈ U :

• for 1 ≤ i ≤ r,MQ,Q |= ø(x, c̄i (MQ,Q))→ φ(x, āQ,Q)
• for 1 ≤ i ≤ r, dim(ø(MQ,Q, c̄i (MQ,Q))) ≥ dim(φ(MQ,Q , āQ,Q))− 1
• {ø(x, c̄i(MQ,Q)) : 1 ≤ i ≤ r} is k-inconsistent
By choosing Q ∈ U with Q ≥ k, we get a contradiction by choice ofMQ,Q.
Conversely suppose that C is closely imbricated, that P =

∏
M∈D M/U is a

non-principal ultraproduct of members of C , and that dim(φ(Pn , ā)) = d . We’ll
show that if d > 1, then we can find a uniformly definable k-inconsistent family of
(d − 1)-dimensional subsets of φ(Pn, ā). We proceed by induction on n. First we
assume without loss of generality (by adding constants to the language) that ā = ∅.
When n = 1 we know that there is U ∈ U where for eachM ∈ U , dim(M ) = d ,
and by close imbrication that there are U ′ ⊆ U with U ′ ∈ U , ø(x, z̄) ∈ L ,
I (M ) ∈ ù, and {c̄i(M ) : i ∈ I (M )} ⊂ M s so as |M | → ∞ in U ′, I (M ) → ∞,
and {ø(x, c̄i(M )) : i ∈ I (M )} defines an arbitrarily large k-inconsistent family
of (d − 1)-dimensional subsets of φ(P), just as before. Hence in P, taking c̄i :=∏
i∈I c̄i (M )/U , {ø(P, c̄i ) : i ∈ I } is as required.
Now suppose that n > 1, and that the result holds for all definable sets of
P,P2, . . . , Pn−1. As d > 1 it must be that φ(Pn) has an infinite projected image
onto some co-ordinate. Without loss of generality, assume that it is the first. That
is dim(ð1(φ(Pn)) = r > 0. Define

φa(P
n−1) := {(a2, . . . , an) ∈ Pn−1 : P |= φ(a, a2, . . . , an)}
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Now as a varies in ð1(φ(Pn)), there are finitely many dimension/measure pairs, say
(e1, ì1), . . . , (et , ìt) which φa(Pn−1) can take.
For each (el , ìl ), define

Al := {a ∈ ð1(φ(Pn)) : (dim, meas)(φa(Pn−1)) = (el , ìl )}
Now if el = d for some l , and a ∈ Al , then by the inductive hypothesis we can
find a uniformly definable k-inconsistent family of (d − 1)-dimensional subsets of
φa(Pn−1), say {øa(Pn−1, c̄i) : i ∈ I }, and then {{a} × øa(Pn−1, c̄i) : i ∈ I } works
for φ(Pn). Hence we may assume that for all l , el < d .
Now for each l ∈ {1, . . . , t}, define:

(fl , íl ) := (dim, meas)(Al )

Then

(dim, meas)
( ⊔

a∈Al

{a} × φa(Pn−1)
)
= (el + fl , ìl · íl )

Moreover φ(Pn) is the disjoint union over l of all these sets, hence

Max{el + fl : 1 ≤ l ≤ t} = d
Say this is attained at l ′. Then as noted above el ′ < d , so fl ′ ≥ 1. Therefore, by
the inductive hypothesis applied to Al ′ there is a uniformly definable k-inconsistent
family {ø(P, c̄i ) : i ∈ I } of (fl ′ − 1)-dimensional subsets of Al ′ . Finally therefore

{ ⊔

a∈ø(P,c̄i )

{a} × φa(Pn−1)) : i ∈ I
}

is a k-inconsistent family of subsets of φ(Pn), and each one has dimension el ′ +
(fl ′ − 1) = d − 1, as required.
So we have shown that for d > 0, and for any d -dimensional definable set in P,
there is k > 0 and a uniformly definable infinite k-inconsistent family of (d − 1)-
dimensional subsets. A straightforward induction on d now proves that on all
definable sets in P, dimension and D-rank agree. �

5.4. Corollary. In any 1-dimensional class, dimension and D-rank agree.

Proof. LetC be a 1-dimensional class. We need only to show thatC is closely im-
bricated. Let φ(x, ȳ) ∈ L . Then ifM ∈ C and ā ∈Mm , either dim(φ(M, ā)) = 0
in which case we have nothing to show, or dim(φ(M, ā)) = 1. But in this case we
can find a family of 0-dimensional subsets of φ(M, ā) which are pairwise incon-
sistent, and whose number grows with |M |, namely the points of φ(M, ā), defined
by x = c. �

The next is an example of an imbricated class in which dimension and D-rank
fail to agree, and shows that the gap between imbrication and close imbrication is
genuine.

5.5. Example. Let L := 〈Ri 〉i∈ù where each Ri is a binary predicate. For each
n ∈ ù define

Mn := {0, . . . , n − 1} × {0, . . . , n − 1}
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where

Mn |= Ri (a, b) :⇔
{
a1 = b1 = i, or
a1 = b1 and a2 = b2

where a = (a1, a2), b = (b1, b2). Then C is imbricated. But taking a non-principal
ultrafilter U on ù, and defining P :=

∏
n∈ùMn/U we find that P has D-rank 1,

and that C is not closely imbricated.

§6. Stable classes.

6.1. Proposition. Let C be a class of finiteL -structures. Then the following are
equivalent:

1. Every infinite ultraproduct of members of C is stable.
2. For every L -formula φ(x̄, ȳ) there is K ∈ ù where for each M ∈ C there do
not exist {āi , b̄i : i ≤ K} inM so thatM |= φ(āi , b̄j)⇔ i ≤ j.

Proof. Suppose that 2 fails. Then there exists φ(x̄, ȳ) so that for each K ∈ ù
there isMK ∈ C and {āKi , b̄Ki : i ≤ K} ⊆MK whereMK |= φ(āKi , b̄Kj) ⇔ i ≤ j.
Let U be a non-principal ultrafilter on ù, and let P :=

∏
K∈ùMK

/
U . Define

āi :=
∏i
K=1 āKK ×∏∞

K=i+1 āKi
/
U and b̄i :=

∏i
K=1 b̄KK ×∏∞

K=i+1 b̄Ki
/
U . Then

P |= φ(āi , b̄j)⇔ i ≤ j, so P is unstable.
Conversely suppose 1 fails. Then there exists an unstable infinite ultraprod-
uct P of members of C . Then there are φ(x̄, ȳ) and {āi , b̄i : i ∈ ù} ⊆ P

where P |= φ(āi , b̄j) ⇔ i ≤ j. Let K ∈ ù. Then P |= ∧0≤i≤j≤K φ(āi , b̄j) ∧∧
0≤j<i≤K ¬φ(āi , b̄j), so there exist U ∈ U where for all k ∈ U we have Mk |=
φ(āi (M ), b̄j(M )) ⇔ i ≤ j. �

6.2. Definition. We call C stable if it satisfies 1 and 2 of proposition 6.1

We now rework the following standard definitions for convenience, see for in-
stance [3]:

6.3. Definition. A stable structure M is functionally unimodular if whenever
f1, f2 : A → B are definable maps, and k1, k2 natural numbers such that for all
b ∈ B we have for each i ∈ {1, 2}, |f−1

i {b}| = ki , then k1 = k2.
A type p ∈ S(B) in a stable structure M is multiplicially unimodular if when-
ever d1, . . . , dn, e1, . . . , en ∈ p(M ), {d1, . . . , dn} and {e1, . . . , en} are each aclB -
independent, and aclB (d̄ ) = aclB(ē), then Mult(d̄ /ē) =Mult(ē/d̄ ).

It is easy to show that measurable structures are functionally unimodular. The
following however seems to be absent from the literature:

6.4. Lemma. If M is a functionally unimodular stable structure and p ∈ S(B)
a minimal type (i.e a stationary type of U -rank 1) in M , then p is multiplicially
unimodular.

Proof. Let p be as in the above definition. We takeM to be somewhat saturated,
and B ⊆M to be small.
Let p′(x̄) := tp(d1, . . . , dn/B) = tp(e1, . . . , en/B) = p ⊗ p ⊗ · · · ⊗ p, and let
q(x̄, ȳ) := tp(d1, . . . , dn, e1, . . . , en/B) ⇒ p′(x̄) ∧ p′(ȳ). Let k1 := Mult(ē/d̄ ) and
k2 := Mult(d̄ /ē). Let ð1 and ð2 be the projection maps from q(M n,M n) onto the
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first and second n coordinates respectively. Then for i ∈ {1, 2}, Im(ði ) = p′(M n)
and ði is everywhere ki -to-1.

Claim. There isφ(x̄ , ȳ)∈q(x̄, ȳ) so thatð1 andð2, when extended toφ(M n ,M n),
have the same range, and are everywhere k1-to-1 and k2-to-1 respectively.

The claim finishes the proof, as we may now apply the definition of functional
unimodularity to conclude that k1 = k2.

Proof of Claim. Suppose not. Then for each φ(x̄, ȳ) ∈ q(x̄, ȳ) there is
(ā, ā1, . . . , āk1+1, b̄1, . . . , b̄k2+1) fromM where

M |= (
∧

1≤i<j≤k1+1

āi 6= āj) ∧ (
∧

1≤i<j≤k2+1

b̄i 6= b̄j) (7)

and

M |=
(
∃ȳφ(ā, ȳ) ∧ ¬∃x̄φ(x̄, ā)) ∨

(
¬∃ȳφ(ā, ȳ) ∧ ∃x̄φ(x̄, ā))

∨
(
k1−1∨

i=1

φ(ā,M n) = {ā1, . . . , āi}
)

∨
(
k2−1∨

i=1

φ(M n , ā) = {b̄1, . . . , b̄i}
)

∨
(
{ā1, . . . , āk1+1} ⊆ φ(ā,M n)) ∨

(
{b̄1, . . . , b̄k2+1} ⊆ φ(M n, ā)

)
(8)

Soby compactness and saturation, there is (ā , ā1, . . . , āk1+1, b̄1, . . . , b̄k2+1) fromM
which satisfies (7) and (8) for every φ ∈ q.
Case 1: there is φ ∈ q, where

M |=
(
∃ȳφ(ā, ȳ) ∧ ¬∃x̄φ(x̄, ā)) ∨

(
¬∃ȳφ(ā, ȳ) ∧ ∃x̄φ(x̄, ā)) .

Without loss of generality suppose, that the first disjunct holds. Then for anyø ∈ q,
ifM |= ¬∃ȳø(ā, ȳ), then (φ∧ø)(ā ,M n) = (φ∧ø)(M n , ā) = ∅which contradicts
the fact that (ā, ā1, . . . , āk1+1, b̄1, . . . , b̄k2+1) satisfies (8) with (φ ∧ ø) in place of
φ. Hence for all ø ∈ q, M |= ∃ȳø(ā, ȳ) and so by compactness and saturation,
ā ∈ ð1(q(M n,M n)), but asM |= ¬∃x̄φ(x̄, ā), we have ā /∈ ð2(q(M n ,M n)), which
is a contradiction.
Case 2: there is φ ∈ q, where

M |=
(
k1−1∨

i=1

φ(ā,M n) = {ā1, . . . , āi}
)

∨
(
k2−1∨

i=1

φ(M n , ā) = {b̄1, . . . , b̄i}
)
.

Again suppose the first disjunct holds. Then for any ø ∈ q, we have
(φ ∧ ø)(ā,M n) ⊆ φ(ā,M n). If (φ ∧ ø)(ā,M n) = ∅ for any ø ∈ q, then
either (φ ∧ ø)(ā,M n) = (φ ∧ ø)(M n , ā) = ∅ which again contradicts (8), or
M |= ∃ȳ((φ ∧ ø)(ȳ , ā) ∧ ¬(φ ∧ ø)(ā, ȳ)) so case 1 applies with φ ∧ ø in place
of φ. Otherwise ā ∈ ð1(q(M n,M n)), but 1 ≤ |ð−11 {ā}| ≤ k1 − 1, which is a
contradiction.
Case 3: for all φ ∈ q, we have

M |=
(
{ā1, . . . , āk1+1} ⊆ φ(ā,M n)) ∨

(
{b̄1, . . . , b̄k2+1} ⊆ φ(M n, ā)

)
.

Now suppose that for some ø ∈ q we have

M |= ¬
(
{b̄1, . . . , b̄k2+1} ⊆ ø(M n , ā)

)
.
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Then as (φ ∧ ø)(ā,M n) ⊆ φ(ā,M n), it must be the case that for all φ ∈ q we have
M |=

(
{ā1, . . . , āk1+1} ⊆ (φ ∧ ø)(ā,M n)). Therefore {ā1, . . . , āk1+1} ⊆ ð−11 {ā},

which is a contradiction. �

The final result is in terms of local modularity: an important notion in geometric
stability theory. A stable structure M is said to be locally modular if for any two
sets A and B , it holds that A and B are independent over acl(A) ∩ acl(B). There
are several equivalent formulations, see for instance [6] for more details.

6.5. Proposition. Stable measurable structures are locally modular. In particular,
any stable infinite ultraproduct from an asymptotic class is locally modular.

Proof. Let M be measurable and stable. Then M is supersimple by 2.7, and
of finite U -rank (since U (M ) = D(M )). As M is stable and supersimple, it is
superstable and by 2.5.8 of [6] it suffices to show that any minimal type p inM is
locally modular. Moreover M is functionally unimodular, and so by lemma 6.4,
p is multiplicially unimodular. But then by 2.4.15 of [6] (see also [3]), p is 2-
pseudolinear, and hence by 5.3.2 of [6], locally modular. �
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